

REDD+ Reducing Emission from Deforestation and Forest Degradation-plus

第6章

森林の時系列解析 ~リモートセンシング技術の利用~

一般社団法人 日本森林技術協会 七海 崇

目次

- 基礎講習のレビュー(RS技術の利用について・・・)
- 実習
 - 基本操作(画像処理ソフトの体験)
 - 衛星画像の表示と各バンドの特徴の確認
 - 画像分類(オブジェクト分類の体験)
 - 精度評価
 - -変化抽出(※GISソフトの体験) ※別講習

Cookbookの該当レシピ

REDD+CookBookより

モニタリングアプローチの選択と実施

2.1.2.4 Selection and implementation of a monitoring approach - deforestation モニタリングアプローチの選択と実施一森林減少

UIULI

- Step1: Selection of the forest definition 森林の定義
- Step2: Designation of forest area for acquiring satellite data 衛星画像取得の対象エリア
- Step3: Selection of satellite imagery and coverage 衛星画像と対象範囲の選択【Cookbook Recipe T05】
- Step4: Decisions for sampling versus wall to wall coverage サンプリングvs全域の決定
- Step5: Proccess and analyze the satellite data 衛星データの処理と解析【Cookbook Recipe T06,08,09】
- Step6:Accuracy assessment 精度評価【Cookbook Recipe T10】

Global Observation of Forest and Land Cover Dynamics

Step1: Selection of the forest definition 森林の定義

Table 1.2.1. Existing frameworks for the Land Use, Land Use Change and Forestry (LULUCF) sector under the UNFCCC and the Kyoto Protocol.

Land Use, Land Use Change and Forestry										
UNFCCC (2003 GPG and 2006 GL-AFOLU)	Kyoto	Kyoto-Flexibility								
Six land use classes and	Article 3.3	CDM								
conversion between them: Forest land Cropland Grassland Wetlands Settlements Other Land	Afforestation, Reforestation, Deforestation Article 3.4 Cropland management Grazing land management Forest management Revegetation	Afforestation Reforestation								
Deforestation= forest land converted to another land category	Controlled by the Rules and Modalities (including Definitions) included in COP/MOP Decisions (for a full set of see www.unfccc.int)									
<i>v i</i>										

GOFC-GOLDホームページ http://www.gofcgold.wur.nl/redd/

 Step2: Designation of forest area for acquiring satellite data

衛星画像取得の対象エリア

- ✓ 国土のすべての森林を含むこと
- ✓森林域について,評価期間中の変化を全てモニタリング すること

Step3: Selection of satellite imagery and coverage 衛星画像と適用範囲

- ✓ Cookbook Recipe T05参照
- ✓ プラットフォーム・センサ・空間分解能・波長分解能・時間分解能・現在/過去/未来・ソフトウェア

海見	47.744	打ち上	運用終	地 누 속고 /命 / 야	観測幅	斜め	観測波長帯	高度	回帰日	再帰観	注文	フルシーン	単価	センサ開発・	7.424
1백) 또	229	げ年	了年	ART DEL DE BRIDE	(km)	観測	(括弧内はパンド数)	(km)	数(日)	測(日)	撮影	価格(円)	(円/km²)	運用	
Landsat 1-3	MSS	1972	1983	68 × 83cm	185	×	可視 (2)、近赤外 (2)	915	18	18	×	40,740 ※	1.3	合衆国 (NASA)	※合衆国 USGS アーカイプ Landsat データは 無料で公開 (http://glovis.usgs.gov/、http:// earthexplorer.usgs.gov/)
Landsat 4-5	MSS	1982	1995*	68 × 83cm	185	×	可視 (2)、近赤外 (2)	705	16	16	×	40,740 ※	1.3	合衆国	*2012 年に 部観測再開
	ТМ	1982	運転中 *	30cm (バンド6:120cm)	185	×	可視(3)、近赤外(1)、 中間赤外(2)、熱赤外(1)				×	88,200 ※	2.8	(NASA)	*2011 年より休止中
Landsat 7	ETM+	1999	運転中 *	30cm (パンド 6:60cm、 パンド 8:15cm)	183	×	可視(3)、近赤外(1)、 中間赤外(2)、熱赤外(1) 可視~近赤外(1)	705	16	16	×	88,200 ※	2.8	合衆国 (NASA)	*2003 年より SLC-off
Eo 1	ALI-Pan, MS	2000	運転中	MS: 30cm Pan: 10cm	37	×	Pan: 可視 (1) MS: 可視 (4)、近赤外 (3)、中間赤外 (3)	705	16	16		0	0	合衆国 (NASA)	http://eo1.usgs.gov/ より無料ダウンロード 可
	Hyperion			30m	7.5	×	可視 ~ 中間赤外 (220)			16					
EOS-Terra/ EOS-Aqua	MODIS	1999	運転中	250m/500m/ 1km	2330	×	250m: 可視(1)、近赤 外(1) 500m: 可視(2)、近赤 外(1)、中間赤外(2) 1km: 可視(7)、近赤外 (5)、 中間赤外(9)、熱赤外(8)	705	16	16		0	0	合衆国 (NASA)	http://reverb.echo.nasa.gov/reverb/より無 料団ロード可 BEDD+CookBook たん

表 T05-1 代表的な光学衛星センサのスペックおよびデータ価格

Step4: Decisions for sampling versus wall to wall coverage サンプリングvs全域の決定

Example of systematic sampling

Example of stratified sampling

Step5: Process and analyze the satellite data 衛星データの処理と解析

雲の除去•季節性の調整データの選択(Recipe T06)

雪の除去

季節性の影響

処理前

処理後

図 T06-1 雲抽出の例

Landsat7 ETM+ 画像 (マレーシア)。画像上で目視判読により雲の輝度の 閾値を調整して抽出した。

図 T06-2 雲なしのモザイク画像 Landsat7 ETM+ 画像 (マレーシア)。INFO¹⁾ により雲を除 去してモザイクした。白い部分はすべての画像で雲がか かり除去しきれなかった部分である。

REDD+CookBookより

季節変化の影響の除去の例(Langner, 未発表)

SPOT4 HRVIR 画像(カンボジア)。上部の画像は既に乾季の最中だったために落葉樹林では落葉が進みピンクに見えるが、季節性を調整することにより落葉前の反射を復元でき、不自然な画像のつなぎ目も減少した。

© CNES2007, Distribution Astrium Services/ Tokyo Spot Image

Table 2.1.3. Main analysis methods for moderate resolution (~ 30 m) imagery.

Method for delineation	Method for class labeling	Practical minimum mapping unit	Principles for use	Advantages / limitations		
Dot interpretation (dots sample)	Visual interpretation	< 0.1 ha	 multiple date preferable to single date interpretation On screen preferable to printouts interpretation 	 closest to classical forestry inventories very accurate although interpreter dependent no map of changes 		
Visual delineation (full image)	Visual interpretation	5 – 10 ha	 multiple date analysis preferable On screen digitizing preferable to delineation on printouts 	- easy to implement - time consuming - interpreter dependent		
Pixel based classification	Supervised labeling (with training and correction phases)	<1 ha	 selection of common spectral training set from multiple dates / images preferable filtering needed to avoid noise 	- difficult to implement - training phase needed		
	Unsupervised clustering + Visual labeling	<1 ha	 interdependent (multiple date) labeling preferable filtering needed to avoid noise 	 difficult to implement noisy effect without filtering 		
Object based segmentation	Supervised labeling (with training and correction phases)	1 - 5 ha	 multiple date segmentation preferable selection of common spectral training set from multiple dates / images preferable 	- more reproducible than visual delineation - training phase needed		
	Unsupervised clustering + Visual labeling	1 - 5 ha	 multiple date segmentation preferable interdependent (multiple date) labeling of single date images preferable 	- more reproducible than visual delineation		

GOFC-GOLD/Nームハーン nttp://www.gotcgola.wur.nl/read/

画像分類手法の比較

手法	長所	短所
自動分類 - オブジェクトベース分類	高分解能の衛星画像の分 類に適しているため、詳細 な分類図を得られる	分類のためのパラメー タ設定が複雑
自動分類 - ピクセルベース分類	作業者の技術力によらず、 比較的均質な成果を得ら れる	高分解能の衛星画像 の分類には適さない
手動分類 - 目視判読	分類精度が高い	経験にもとづく技術力 が必要であり、また作 業量が多くなる

オブジェクトベース分類

[1] 分類図を作成する方法

セグメンテーションと呼ばれる処理により、 スペクトル情報や形状情報に基づいたオ ブジェクト(ピクセルの集合)が生成される

ピクセルベース分類

[1] 分類図を作成する方法

[1] 分類図を作成する方法

対象物の持つ『色調』『形状』『大きさ』 『きめ』『模様』などを手がかりにした作 業者の判断により分類する

REDD+ Reducing Emission from Deforestation and Forest Degradation-plus

オブジェクトベース分類

ピクセルベース分類

目視判読

[1] 分類図を作成する方法

REDD+ Reducing Emission from Deforestation and Forest Degradation-plus

平成26年度 応用講習a

各手法の短所・長所(課題)

自動/ チ動	抽出方法	分類/検	手法	長所	短所	
于IJ		出ベース				対処
 自動/ 自動 (1) らのイ図う抽 (2) 三画値直 手動 手動 共通 	(1) 時点ごと の森林タ イプ分類 図作成の	オブジェ	クト	 ●高分解能画像の分類に 適しているため、詳細 な分類図が得られる ●炭素量への変換が容易 	 分類のためのパラメータ 設定が複雑 ニ時点のオブジェクトが 完全に一致せず極小 のゴミが発生 	●ゴミ処理は難 しい
	□ 二 魚の うえ変化 抽出	ピクセル		●作業者の技術力によら ず、比較的均質な成果 が得られる	●高分解能画像の分類 に適さない	●中分解能・低 分解能で利用
	(2) 二時点の	オフ゛シ゛エク ト/ヒ゜クセル	差	●もっとも簡単で結果が よい	●土地被覆の変化履歴 がわからない	 変化箇所に対して分類処理
	画像の数 値情報を 直接利用		主成分分 析	●伐採や植林が特定の主 成分に現れる傾向があ る	●植生の李節変化の影 響を受ける	を施す ●同時期の画像 を様々な提供 元で検索
			共通オブジェ 区トを利用 した分類結 果の比較	●土地被覆が明らかにな る ●ゴミが発生しない	●植生の季節変化の影 響を受ける	●同時期の画像 を様々な提供 元で検索
手動	共通	目視判読		●分類精度が高い	●判読者の影響を受け る	●判読カードの整 備

オブジェクト分類に対応したソフトウェア

ソフトウェア	開発社	
eCognition	Trimble	
Feature Analyst for ArcGIS	Overwatch Systems	
ENVI EX 🔰 体験! <	EXELIS	
Picasso	(株)つくばアグリサイエン	ンス
Feature Analyst for ArcGIS	ENVI EX	Picasso
建物抽出		マルチモード 関値を3段間に設定し
		て 亚 クロック

<属性の自動付与>

IVI EX			1	
Edit Display Help				
DO AN MAANSHUSSARAN			oom To	10 10 1
BO STOLED A SHARE AND A SOUL	044-0			A.
*				
- 🕸 🛱 🗶	Livear 🐱 🕱 🛢			2
	CONTRACTOR OF			
	60 6			anticard
		A DECEMBER OF	1000	Marie -
	CLASS ID	AREA	LENGTH	COMP
318	Trees	13393944	100.00758	0.1295430
319	Inpervious	13.661883	22801159	0.1830510
A CHARLEN AND A TANK 320	Trees	25203470	9.6009340	0.1865830
321	Trees	5,7607930	12000826	0.2256760
322	Trees	5.0406940	9.6007520	0 2638730
A A REAL AND A REAL AND AND A REAL AND A REA	Trees	28803960	7 2004960	0 2659620
374	Trees	35284857	38 403008	0.1745360
71 1 25	Trees	3.9605450	9.6007520	0.233898
225	Trees	8.2811400	19/201686	0.1691070
327	Trees	23.043172	28.802165	0.1800620
228	Trees	11.161536	15:601028	0.2416370
200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Trees	69.129516	51.603597	0.1818050
	Inpervious	15.122092	18001102	0.2437600
State State State 31	Trees	8.2811400	19,201778	0.1691060
	Trees	3.9605450	9.6007520	0 233899
N A & X & X & X & X & X X	11.000			
317	Trees	25,563519	32,402823	0.176069
302 303 304	Trees Trees	25.563519 152.30096	32.402823 64.804643	0.176068

ESRIジャパンHPより http://www.esrij.com/

(株) つくばアグリサイエンス HPhttp://www.tsukuba-agriscience.com/

区画分類の仕組み

 区画内の画素値から算出した統計量に基づき、区画を分類
 各バンドごと、およびバンド間演算(NDVIなど)の平均、標準偏差、 最大最小など

空中写真 - 目視判読

凡例

ENVIEXの画像分割

Segment

明るさや色, テクスチャなどの局所特徴の不連続部分を抽出して対象の輪郭を求め, エッジ検出をするアルゴリズム

Scale Level 20

境界を作りたいところに線がある

Scale Level 60

土地利用の境界に線がない箇所が多い

[1] 各時点でそれぞれ森林タイプ分類図を作成して差分をとる方法

[2] 2時点の画像間の変化を直接検出する方法

リモートセンシングデータを用いた 土地利被覆区分の時系列解析の流れ

幾何補正
大気補正
地形補正
DN→反射率変換
オブジェクト分類
ピクセル分類
目視判読

分類結果の差によるもの 2時点の画像間の変化を 直接検出する方法

	長所	短所
[1] 各時点でそれぞれ森 林タイプ分類図を作成し て差分をとる方法	作成した分類図から炭素量 への換算が比較的容易	分類結果に誤差が多く,2 時点の比較が困難になる
[2] 2時点の画像間の変 化を直接検出する方法	変化のある箇所の検出精度は比較的高い	炭素量への換算が困難 2時点の画像の幾何補正 が正確になされていなくて はならない

変化抽出技術の特徴(2)

『各時点でそれぞれ森林タイプ分類図を作成し差分をとる方法』の各分類手法

	長所	短所
自動分類 - オブジェクトベース分類	高分解能の衛星画像の分 類に適しているため、詳細 な分類図を得られる 均質な森林タイプごとにまと まりを形成できる	分類のためのパラメータ 設定が複雑
自動分類 - ピクセルベース分類	作業者の技術力によらず、 比較的均質な成果を得ら れる	高分解能の衛星画像の分 類には適さない ノイズが含まれる
手動分類 - 目視判読	分類精度が高い 	経験にもとづく技術力が必 要であり、また作業量が多 くなる

[2] 変化を検出する方法

変化抽出技術の特徴(3)

▶『2時点の画像間の変化を直接検出する方法』には様々な手法がある。
▶代表的な手法としては『バンド間の差』『NDVI画像の差』『主成分分析』など。
▶一般的に、分類図を作成して差分をとる方法より高い精度で変化を抽出できる。

バンド間の差分による検出 [2] 変化を検出する方法

RESTECホームページより http://www.restec.or.jp/

▶各バンドは地表面の様々な特徴をとらえている。
▶森林の変化検出にはLANDSATバンド7(短波 長赤外線)がよく用いられる。
▶一般的に、植林による変化より伐採による変化

のほうが検出しやすい。

バンド間の差分による検出 [2] 変化を検出する方法

期末画像 LANDSA 2002年

[2] 変化を検出する方法

NDVI画像の差分による検出

NDVI:正規化植生指標

$$NDVI = \frac{[NIR] - [R]}{[NIR] + [R]}$$

(NIR: 近赤外バンド
(R: 赤バンド

グランドトゥルース (T08)

Carnet de l'inventaire

- 抽出方法
 - 表T08-1
- 参照クラスごとのサン プル数
 - 説明変数の10倍
- 野帳

N° d'identification de la parcelle						Date						Nom du groupe							
se		Duit																	
s de bas	Personnes effectuant	l'inve	ntaire)				(Verte	x)					(DHP	')					
ation	l'inventaire	(Hauteur d	e l'arb	ore)				(Transpo	ondeu	ur)				(Autres)					
Inform	Coordonnées du Parking	Lat	N		0		,		"	Long	Е		o		,		•	"	
	Heure de dépa	ırt			:				Heu	re d'arriv	ée					:			
											χs	ystème de	s co	ordonnées	géog	raphi	ques :	WGS84	
rcelle	Coordonnées du centre de la parcelle	Lat	N		0		,		"	Lomg	Е		0		,		•	"	
Info pa	Direction du talus		Noter l avec 8 plat.	la direction de directions et '	la basse partie du talus 'Non" pour un terrain Angle du talus							Degré (nom	bre en	itier)					
Photo	⑦Paysage	@Zenith ③Nord				@Est	Est ©Sud ©Oue			@Oues	st ØVue d'ensemble 2			©Vue d'ensemble 2 2					
Sous-bois Dense / Moyen / Rare Erosion du sol Oui / Non Insectes et maladies Oui / N										Non									
Remarque																			
							C	roquis											

REDD+CookBookより

Step6:Accuracy assessment 精度評価

- 衛星画像データに関する考慮事項について
- ✓衛星画像データの質、特徴(空間情報、スペクトラル情報、撮影周期、雨季、乾季のようなフェノロジー的な要素・・・)
- ✓衛星画像入手時には、センサーの処理レベルに応じて地理的な位置精度や画質のチェック
- ✓異なるセンサー間でのデータの取扱い
- ✓幾何補正(地理的な歪みの取除き)、大気補正等
- ✓主題図作成の基準(土地分類カテゴリーや最小作図単位など)
- ✓画像判読の手順(分類アルゴリズム、目視判読基準など)
- ✓地図作成後の処理(後処理・・・ベクタ/ラスタ変換、O値の取扱いなど)
- ✓精度評価のためのレファレンスデータの入手(教師データ、検証データなど)
- ✓地図作成時には、主題図作成の統一的かつ透明性のある基準に従って専門家に よる適切な判読、モニタリングが為されるべき
 - → 判読キーなどの文書化が必須(統一性、透明性)
 - → トレーニングデータの取得方法、検査方法の手順化(統一性、透明性)
 - → 雲や雲陰などのNo dataの取扱い、処理方法も手順化する必要有り。

精度評価の計算方法 (T10)

• 判別効率表と精度の指標

図 T10-1 現実の世界と衛星画像から分類された地図の土地被覆 実際には (a) は知りえず (b) しか得られないので、サンプル (グランドトゥルー ス)を地図上で抽出して (a) と (b) を比較し、地図の精度とバイアスを推定し なければならない。

(c) 重ねると一致しない

REDD+CookBookより

実習の材料

- 対象地:ベトナム中部
 - 乾季·雨季
 - ベトナム中部の場合、9-12月雨季。乾季は2-6月
 - 森林政策
 - 造林計画(通称500万ha造林プロジェクト)による人工林の増加がある
 - 1980年代後半から東南アジアーの造林面積
 - FAOのカントリーレポート
 - 造林の主要樹種
 - *Eucalyptus camaldulensis* Dehn.
 - Acacia mangium Wild.
 - 対象国の森林
 - groundtruth¥Redd研修_判読用
 - 統計データの不確かさ
 - FAOのFRA、CIFORのレポートなどと比較

オブジェクト分類 ENVIEX 基本操作マニュアル

- デスクトップのENVI EXアイコンをクリック
- メインダイアログが起動します

- ファイルを開く -
- Data Managerを起動します

ENVI EX
Edit Display Help
🛋 🔁 🚱 👒 🛌 🗮 🕎 💠 🕂 🧮 📰 🎬 🗛 😒 🟠 🗖 🤇
🕲 — 🖗 💿 🚆 🔘 — 🕕 💭 20 🚆 Linear
▼ Overview 🗈
▼ Layer Manager 💼
Portals
Layers

1. Data Manager ダイアログの ファイルマークをクリック

🔯 Data Manager 📃 🗆 🗙
 File Information
 Band Selection
Load Data
Tip: Working with the Data Manager

2. Open ダイアログが表示されます。以 下のディレクトリからファイルを選択します。 C:¥REDD¥data¥SampleImageフォルダ内 SampleC 1996 2010

3. ファイルを選択すると, Data Manager ダイアログにファイル名, バンドの一覧 が表示されます。また, ENVI EXメイン ウィドウに画像が表示されます。

ENVIEXの操作 - ファイルを開く-

3. ファイルを選択すると, Data Managerダイアログにファイル名, バ ンドが表示されます。また, ENVI EXメ インウィドウに画像が表示されます。

2. Open ダイアログが表示されます。以下のディレクトリからファイルを選択します。 C:¥REDD¥data¥SampleImage フォルダ内 SampleC 1996 2010

サンプル画像の情報 Landsat TM 2010年7月5日 1996年7月14日

カラー合成および判読

ENVI EXの操作 - 単画像表示(白黒)-レイヤの選択

😋 Data Ma	anager	
🗳 + -	- 🖹 🖹 🌖 🗳	
🖃 🔯 Sa	mpleC_1996_2010	
D	01_20100705_B1_BLU	
0	02_20100705_B2_GRN	
0	03 20100705 B3 RED	
	04_20100705_B4 M	Land Crevente
····· D	05_20100705_B5_	Load Grayscale
····· D	06_20100705_B7_MIR	
0	07_20100705_NDVI	
····· D	08_19960714_B1_BLU	
····· D	09_19960714_B2_GRN	
····· D	10_19960714_B3_RED	
····· D	11_19960714_B4_NIR	
0	12_19960714_B5_SWIR	
0	13_19960714_B7_MIR	
····· D	14_19960714_NDVI	
File Information		
▶ Band Selection		
Load Data		
Tip: Working with the Data Manager		

単画像の表示

Data Managerダイアログ内のレイヤの上 で **右クリック**して"Load Grayscale"をク リック

サンプルデータのバンド構成は下表のとおり

	バンド(2010年)		バンド(1996年)
1	2010 B1(青)	8	1996 B1(青)
2	2010 B2(緑)	9	1996 B2(緑)
3	2010 B3(赤)	10	1996 B3(<mark>赤</mark>)
4	2010 B4(近赤外)	11	1996 B4(近赤外)
5	2010 B5(短波長赤外)	12	1996 B5(短波長赤外)
6	2010 B7(中間赤外)	13	1996 B7(中間赤外)
7	2010 NDVI	14	1996 NDVI

🖸 Data Manager	
😅 + - 🛛 🖹 📀 🗳	
□ 🔂 SampleC 1996 2010	1
- 01 20100705 B1 BLU	
- 02_20100705_B2_GBN	
- 03_20100705_B3_RED	
04_20100705_B4_NIR	
3 □ 05_20100705_B5_SWIR	
06_20100705_B7_MIR	
07_20100705_NDVI	
08_19960714_B1_BLU	
09_19960714_B2_GRN	1
- 0 10_19960/14_B3_RED	L
- 10 10000714_B4_NIK	•
- 12_19960714_B5_SWIR	2
- 14 10000714 B/_MIR	
····· 🖬 14_19900714_NDV1	3
File Information	4
▼ Band Selection	
03_20100705_B3_RED [SampleC_1996_20]	5
2 02_20100705_B2_GRN [SampleC_1996_20]	6
01_20100705_B1_BLU [SampleC_1996_20]	
Load Data	7

カラー合成の表示

2010年と1996年の画像をカラーで表示

1. Data Manager ダイアログのBand Selectionの右

- 向き▲をクリックし、下向きに
- 2. 赤色ボタンをクリック
- 3. リストから割り当てる2010年のレイヤを選択
- 4. 緑、青色に割り当てるレイヤも同様に指定
- 5. Load Dataボタンを押す
- 6.1996年の画像も表示

サンプルデータのバンド構成は下表のとおり

	バンド		バンド
1	2010 B1 BLU <mark>(青領域)</mark>	8	1996 B1BLU <u>(青領域)</u>
2	2010 B2 GRN <mark>(緑領域)</mark>	9	1996 B2 GRN <mark>(緑領域)</mark>
3	2010 B3 RED <mark>(赤領域)</mark>	10	1996 RED <mark>(赤領域)</mark>
4	2010 B4 NIR <mark>(近赤外領域)</mark>	11	1996 B4 NIR <mark>(近赤外領域)</mark>
5	2010 B5 SWIR <u>(短波長赤外)</u>	12	1996 B5 SWIR <mark>(短波長赤外)</mark>
6	2010 B7 MIR <u>(中間赤外)</u>	13	1996 B7 MIR <mark>(中間赤外)</mark>
7	2010 NDVI	14	1996 NDVI

Т

4

1996年7月14日

2010年7月5日

トゥルーカラー表示

1996年7月14日

2010年7月5日

14年でどのような変化があったと推測されますか?

REDD+ Reducing Emission from Deforestation and Forest Degradation-plus

平成26年度 応用講習a

別のレイヤの表示方法 ① 非表示

X

REDD+ Reducing Emission from Deforestation and Forest Degradation-plus

平成26年度 応用講習a

別のレイヤの表示方法 ② レイヤの移動

下のレイヤを最前面に持ってきたい場合

レイヤを左ドラッグして、一番上に移動

トレーニングエリアと重ね合わせ

- ベクタファイルを開く 1. Openボタンをクリック
- 2. 1996年のカラー合成したレイヤを最前 面に表示させる
- C:¥REDD¥data¥トレーニングデータ フォルダ内 <u>Training 1996 NaturalForest.shp</u>を 選択
- 4. 開くボタンをクリック
- 5. Plantation, bareland, waterも同じ要 領で表示する

現地の写真

• C:¥REDD¥data¥Redd研修_判読用写真

- 人工林と天然林

フォールスカラー表示 1996年7月14日 2010年7月5日

14年でどのような変化があったと推測されますか? 赤 11_1996_B4_NIR 赤 04_2010_B4_NIR 緑 10_1996_B3_RED 緑 03_2010_B3_RED 青 09_1996_B2_GRN 青 02_2010_B2_GRN

NDVI Gray scale 表示

1996年7月14日

2010年7月5日

14年でどのような変化があったと推測されますか?

カラー合成 赤:2010band7 緑:1996band7 青:2010band7

ピンクの箇所 はどう変化?

黄緑の緑の箇 所はどう変化?

緑の箇所はど う変化?

オブジェクト分類

ENVIEXの画像分割の仕組み

- オブジェクト分類 -- Select Fx Input Filesダイアログが立ち上がります
 - •ファイル名を確認し、OKボタンをクリック

画像の表示

カラー合成の表示
1. Data Manager ダイアログのBand Selectionの右向き▲をクリックし、下向きに
2. 赤色ボタンをクリック
3. リストから割り当てる2010年のレイヤを選択
4. 緑、青色に割り当てるレイヤも同様に指定
5. Load Dataボタンを押す

REDD+ Reducing Emission from Deforestation and Forest Degradation-plus

ENVI EXの操作 Segmentation

Scale Level 0

土地被覆タイプの境界を作りたいとこ ろにセグメントの線はあるが,かなり 細かい

Scale Level 20

境界を作りたいところに線がある

ENVI EXの操作 Segmentation

Scale Level 60

土地利用の境界に線がない箇所が多い

Scale Level 90

明らかにセグメントが少ない

ENVI EXの操作

- オブジェクトの作成 -

- ステップ②Merge(結合)
1. Previewにチェックを入れてください
2. Merge Levelを調整してください

会 Feature Extraction	
Find Objects Merge	
Merge Level	
Preview	
2	< Back Nex

ENVI EXの操作 Merge

Merge Level 95

Scale Level 85

ENVI EXの操作

- オブジェクトの作成 -

- ステップ②Merge(結合)
 - 1. Merge Levelを決めたらNextボタン を押してください

会 Feature Extraction	
Find Objects Merge	
Merge Level	
✓ Preview	
	K Back

ENVIEXの画像分割の仕組み

ENVI EXの操作

- オブジェクトの作成 -

Threshold 閾値の設定

- No Tresholding(default)をチェック
- ある数値範囲のオブジェクトを抽出する際には、この閾値化ツールを利用すると便利
 - Thresholding(advaned) Thresholds の数値を, 画像を見ながら調整
 - Thresholdsの数値を決めたら、Nextボ タンをクリック

Feature Extraction

Find Objects

Refine

No Thresholding (default)

O Thresholding (advanced)

?

Next >

< Back

ENVI EXの操作

- ステップ①Compute Attribute

- Attributes
 - Spatial, Spectral, Textureにチェック
- Advanced
 - Color Space, Band Ratio 今回はなし

-	Feature Extraction	
	Find Objects Compute Attributes	Find Objects Compute Attributes
	Attributes Advanced ✓ Spatial ✓ Spectral ✓ Texture	Attributes Advanced Color Space Band Ratio

ENVIEXの画像分割の仕組み

ENVIEXの操作

- フィーチャの抽出-
- ステップ②分類
 - Choose by Selection Examplesをクリック

会 Feature Extraction	
Extract Features Classify or Export	ELE BOOM
Ochoose by Selecting Examples	
○ Choose by Creating Rules	
○ Export Vectors	

ENVI EXの操作

- ステップ③教師付データの選択
 - 作成されたオブジェクトがどの土地利用に該当 するかを判読してカテゴリに分けます。また、名 前を付けます。

会 Feature Extraction				
Extract Features Supervised Classification				
Features Attributes Algorithm Features Feature_1 (0 objects)				
Show Boundaries				

- フィーチャの抽出-- ステップ③教師付データの選択

- 各フィーチャに名前を付ける場合は、Feature properties アイ コン→A
- フィーチャを追加する場合は、Add featureアイコンをクリック
 →R

ENVI EXの操作

-フィーチャの抽出--ステップ③教師付データの選択

• 各土地被覆タイプを選択した状態で、ENVI EX 画面をクリックしていくと教師データが追加されます

ENVIEXの画像分割の仕組み

- フィーチャの抽出-ベクターデータの出力

- 1. Export Features to a Single Layerをクリック
- 2. Smoothingのチェックを<u>外す</u>

ENVIEXの操作

- フィーチャの抽出-- ベクターデータの出力

•Select Output FileのBrowseボ タンをクリックし、ファイルを 保存する場所を指定します。

保存先:C:¥REDD¥work ファイル名:2010.shp

•Export Attributesにチェック を入れると、Attributesのデー タ表が作成されます

ENVIEXの操作

- フフス 画作	家の出力
Feature Extraction	
Extract Eastures	

Extract Features Export Features		
Vector Output Image Output		•
Select Output Class File C:¥REDD¥work¥2010test2_class Browse		ш
Export Rule Results Select Output Rule File CHIsersHurutaHappDataHocalHTe Browse		
		Ŧ
2	< Back Next > Skip Cancel	

- 1. Image Output タブをク リック
- Export Class Resluts に
 チェック
- Select Output Class Fileの Browseボタンをクリック し、ファイルの保存先と ファイル名を決める

保存先:C:¥REDD¥work ファイル名:2010_image

4. Nextボタンをクック

※Export Rule Resultsはチェック を外す

ENVI EX)操作
- フィー	-チャの抽出-

会 Feature Extraction

Extract Features

Report and Statistics

>

Cancel

Report Statistics

File Name: p124r52_19901230_cut.img

Segment Scale Level: 25.0 Merge Level: 95.0 Refine: No Thresholding

Attributes Computed: Spatial

Classification: Supervised (K Nearest Neighbor)

Export Options: Vector Output File: C:¥Documents and Settings¥USER¥Local Settings¥Temp¥vectors.shp Feature Info: Bamboo Type: Polygon

< Back

Finish

Skip

Save Text Report

- Reportを保存

- 基本情報
- Statistics
- 1. Save Text Reportボタンをク リックし、txtファイルを保存

保存先:C:¥REDD¥work ファイル名:2010_report

 Finishボタンをクリック
 Are you sure… というメッ セージが表示されたら、OK ボタンをクリック

2

ENVIEXの画像分割の仕組み

- ベクタファイルを開く
- Openボタンをクリック 1.
- 2. 1996年のカラー合成したレイヤを最前面に表示さ せる
- C:¥REDD¥workフォルダから2010.shpを選択 3.
- 4. 開くボタンをクリック
- ベクタレイヤを右クリックし、View Attributesを選択 すると、下のような表が作成されます

ಿ Attr	ibute Viewer: o	utput_vector.shp				
	CLASS_ID	AREA	LENGTH	COMPACT	CONVEXITY	
1	Bamboo	41112440.	129200.82	0.079362000	4.1656530	0.7 🔨
2	Limestone	72696.375	1434.2692	0.21212000	1.0954030	0.7 📃
3	City_Bare	13808.250	498.98571	0.26572700	1.0000000	1.0
4	Coniferous	1085978.3	9121.6524	0.14938500	1.8285770	0.6
5	City_Bare	77976.000	1415.6771	0.22257200	1.1218510	0.7
6	Broadleaved	2.3675950e+008	337762.22	0.076227000	4.5567090	0.7
7	City_Bare	33302.250	882.30625	0.23338500	1.0829340	0.7
8	Coniferous	226211.63	3679.8885	0.14584000	1.4606900	0.6
9	Bamboo	163668.38	2808.8311	0.16252200	1.2948590	0.6
10	Bamboo	3330225.0	17627.598	0.11681500	1.9000110	0.6
11	Coniferous	2453807.3	11821.351	0.14952300	1.5102880	0.7
12	City_Bare	5279.6250	296.35285	0.27666100	1.0000000	1.0
13	City_Bare	21524.625	638.35285	0.25933600	1.0551930	0.9
14	Bamboo	8934.7500	456.00000	0.23390100	1.0579840	0.8
15	Coniferous	27616.500	792.08576	0.23673800	1.0776860	0.9 🔽
						>
				Tip: Viewi	ng Attributes	Close

X

- インターセクト

- 作成したベクターデータをArcGISのインター セクト機能でデータを分割および情報の統 合する
- 面積の計算
- 集計

※GISソフトの体験(別講習)で実施。

精度評価

- Error Matrixの作成
 - 最新画像
 - 現地調査による検証
 - 過去画像
 - 画像の手動判読

- » システマティック
- » 層化

9

- Error Matrixの作成 分類結果の精度検証 (2010年の分類結果を使用)

- Error Matrixの作成

- ENVI上で操作(ENVI EXでなく)

• デスクトップにあるENVI 4.8のアイコンをクリック

メインメニューバーが起動

- Error Matrixの作成
 - ラスター分類画像を開く
 - 1. メインメニューバーのFileをクリック
 - 2. Open Image Fileをクリック
 - 3. 先ほど作成した分類画像を選択(C:\#REDD\#work\#2010_image)
 - Available Band Listが表示されるので、分類画像を選択し、 Load Band ボタンをクリック

87

ENVI 操作

- Error Matrixの作成
 - 検証用のベクターファイルを開く
 - 1. メインメニューバーのFileをクリック
 - 2. Open Vector Fileをクリック
 - 3. ファイルの種類をshapefileに変更
 - 4. C:\#REDD\#data\#検証用データ\#Groundtruth_2010 フォルダ内の4つのフ ァイルを選択し、"開く"ボタンを押す
 - 5. Available Vectors Listが表示される
 - 6. Select All Layersボタンをクリックし、Load Selectedボタンを押す
 - 7. ウィンドウの選択画面が表示されるので、Class画像が表示されている Display #1を選択

X

- Error Matrixの作成

- ベクターファイルをENVIのROIとしてエクスポート

- 1. Available Vectors Listの4つのファ イルを選択
- Available Vectors Listのメニュー バーのFile > Export Layers to ROIをクリック

(注) Vector parameters… ダイアログではありません

- Error Matrixの作成 ROIファイルの作成
 - 1. Select Data File to Associate with new ROIsダイア ログが起動
 - Select Input Fileにて、作成した分類画像 (2010_class)を選択し、OKボタンをクリック
 - 3. Export EVF Layers to ROIダイアログが起動する
 - 4. Convert all records of an EVF layers to one ROI をチェック

- Error Matrixの作成 – ROIツールダイアログの表示

- 1. 分類画像のウィンドウ(イメージウィンドウ)の Tool> Region of Interest > ROI Tools…をクリック
- 2. ROI Toolダイアログが表示

#1 Band 1:1996_Objct	Class		_ 🗆 🗙				
File Overlay Enhance	Tools	Window					
	L P	ink rofiles olarization Signatur	res k	Available Bands L File Options			
Fill 🛃 🛃 🕅	F	egion Of Interest	۱.	ROI Tool			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C	olor Mapping	۱.	Restore Saved ROI File			
	C P	Cursor Location/Valu ixel Locator	Je	Save ROIs to File Delete ROIs			
	oint Collection uild Mask leasurement Tool ine of Sight Calculator		Export ROIs to EVF Export ROIs to n-D Visualizer				
	5	patial Pixel Editor		Reconcile ROIs ele			

- Error Matrixの作成
 - 1. ENVI メインメニューバーのClassificationをクリック
 - 2. Classification > Port Classification > Confusion Matrix > Using Ground Truth ROIsをクリック
 - 3. Classification Input Fileダイアログが表示
 - 4. このリスト内から分類画像を選択し、OKボタンをクリック

- Error Matrixの作成 – エラーマトリックスの作成

検証データと分類画像のクラスをあわせる

- 1. Match Class Parametersダイアログが表示
- 2. Select Ground Truth ROI、Select Classification Imageから同クラスを選択
- 3. Add Combinationボタンをクリック。Matched Classesに項目が増える。
- Natural Forest, Plantation, Bareland, Water のすべてのクラスを組み合わせたら、 OKボタンをクリック
- 5. Confusion Matrix Parametersのダイアログ が表示される。
- 6. デフォルトのまま、OKボタンをクリック
- 7. 表が表示される

Class Confusion Matrix

File

Confusion Matrix: C:\REDD\work\2010test2_class

Overall Accuracy = (18231/26217) 69.5388% Kappa Coefficient = 0.4957

照合用クラス

		Ground	Truth	(Pixel:	в)					
Class	EVF:	Layer:	VEVF:	Layer:	VEVF:	Layer:	VEVF:	Layer:	v	Total
Unclassified	1		0		0		0		0	0
NaturalForest	t i	1023	28	21	21		2	41	10	12761
Plantation	1	308	32	57	74		0	17	79	9035
Bareland	1		0		2	93	24		0	926
Water	c .	98	88	12	02		0	13(05	3495
Total	L	1429	98	90	99	93	26	189	94	26217

Ground Truth (Percent)

Class	EVF:	Layer:	VEVF:	Layer:	VEVF:	Layer:	VEVF:	Layer:	v	Total
Unclassifie	d	0.0	00	Ο.	00	0.0	00	0.0	00	0.00
NaturalFores	t	71.	53	23.	31	0.1	22	21.0	65	48.67
Plantatio	n	21.	56	63.4	46	0.0	00	9.4	45	34.46
Barelan	d	0.0	00	Ο.	02	99.1	78	0.0	00	3.53
Wate	r	6.5	91	13.	21	0.0	00	68.9	90	13.33
Tota	1	100.0	00	100.	00	100.0	00	100.0	00	100.00

Class	Commission (Percent)	Omission (Percent)	Commission (Pixels)	Omission (Pixels)
NaturalForest	19.85	28.47	2533/12761	4070/14298
Plantation	36.09	36.54	3261/9035	3325/9099
Bareland	0.22	0.22	2/926	2/926
Water	62.66	31.10	2190/3495	589/1894
Class	Prod. Acc. (Percent)	User Acc. (Percent)	Prod. Acc. (Pixels)	User Acc. (Pixels)
NaturalForest	71.53	80.15	10228/14298	10228/12761
Plantation	63.46	63.91	5774/9099	5774/9035
Bareland	99.78	99.78	924/926	924/926
Water	68.90	37.34	1305/1894	1305/3495

全体精度は?

- どのような土地被覆のク ラスで誤分類が多かった か?
- ・ 誤分類するクラスはどの クラスに分類されたか?