平成26年度 REDDプラスに係る森林技術者講習会(応用講習a)

REDD+における SARデータの利用と留意点

一般財団法人 リモート・センシング技術センター
 RESTEC REMOTE SENSING TECHNOLOGY CENTER OF JAPAN

目次

- 1. SARとは
- 2. SARを使った森林における解析事例
- 3. SARデータの特性と活用上の留意点
- 4. SARデータの取得・購入について

1. SARとは

SAR画像はどう見える?

SARで森林がどう見える?

北海道中標津町周辺

Google Earth画像において,濃い緑が森林,明る い緑が耕地となっている。 PALSAR画像ではGoogle Earthにて森林に対応する 箇所が明るく,耕地や水域が暗くなっている。 PALSAR画像では森林が明るく見える。

Google Earth (可視センサ)

PALSARによる画像

SARで森林がどう見える?

北海道中標津町周辺

広がりのある森林のみならず,防風林においても PALSARの画像にて明るくなっており,樹木のある 箇所を特定することができる。

Google Earth (可視センサ)

PALSARによる画像

SARで森林がどう見える?

北海道中標津町周辺

SARで森林がどう見える?

SAR画像は一般的な画像と異なり白黒の画像 森林に対して感受性が高く、他の土地被覆に比べて明るく見える。 明るく見える特性を活かして、その広がりを監視することが出来る。

可視光画像との違い

SARとその定義

<u>SAR (Synthetic Aperture Radar : 合成開口レーダ)</u> 装置自身がマイクロ波を照射し、その後方散乱を受信・画 像化する能動型 (アクティブ) センサ。 映像レーダの一種。合成開口処理(後述)により、衛星高 度からでも高分解能観測を実現。

・マイクロ波センサ ・アクティブセンサ ・映像レーダ

JERS-1/OPSによる富士山

JERS-1/SARによる富士山

センサと観測対象の位置関係

可視センサ センサから直下,太陽光を対象物が反 射,散乱したものをとらえる

SARと可視センサの比較

可視センサ
 可視光線をとらえる。人間の目で見えるものと近い画像が得られる。
 太陽光を対象物が反射,散乱したものをとらえる
 :受動型センサ
 光学センサ,可視センサなどと呼ばれる。
 例:ALOS/AVNIR-2/PRISM, Landsat等

• SARセンサ

センサから放たれたマイクロ波を対象物から反射, 散乱したものをとらえる。 :受動型センサ

SAR, 合成開ロレーダ, レーダなどと呼ばれる 人間の目でみたものとは異なる画像が得られる。 例: ALOS/PALSAR, ALOS-2/PALSAR, RADARSAT, Terra-SAR-X等

SARと可視光の波長域の違い

SARは可視光と比べて波長がとても長い。このため大気の透過率が高く、雲など水蒸気も透過するため晴天でなくとも観測が可能。

SARと可視センサの比較

- 光学センサのメリット
 人間の目で見えるものと近い画像が得られるため理解が容易。
 得られる情報が多いため、SARIこ比べてより詳細な土地被覆の分析が可能。
 衛星からの直下を観測するためSARIに比べて歪みが少ない。
- SARセンサのメリット(SARが期待される理由)
 マイクロ波は雲を透過するため天候に左右されず観測が可能。
 → 降雨の多い低緯度熱帯地域にて観測機会が多い。

自らマイクロ波を放ち観測する能動型のため,昼夜問わず観測が可能。 → 可視センサに比べて観測機会が増える。

SARと可視センサの比較

- 光学センサのデメリット
 大気の状態に大きく左右される。
 特に雲がある場合,有効なデータが全く得られない。
 観測機会が少なく,データをそろえることが難しい。
- SARセンサのデメリット(SARが敬遠されがちな理由)
 人間の目で見えるものとは異なる画像のため理解が難しい。
 画像化の処理が難しい。
 斜めから観測しているため,画像の歪み,倒れ込みの問題。

SARと可視センサの比較

- 可視光を利用したセンサとは異なる特性を持つ。
- 可視光に比べて解釈が難しく直感的な理解が難しい。
- 可視光には見えないものが見えるため、観測機会が多くなり 安定的に観測が可能。

SAR観測のメカニズム

SAR観測のメカニズム

SARはセンサ自らマイクロ波を放射する能動型

センサからのマイクロ波を地上の観測対象物が反射, 散乱したものを受信し観測 している。

散乱にはいくつかの種類がある。

対象物によって散乱が異なることを利用して観測を行っている。

マイクロ波の散乱

周波数の長いLバンドは樹冠を透過し樹幹部から散乱があるため、材積、バイオマスとの相関関係が研究されてる。

ALOS/PALSAR, ALOS-2/PALSAR-2はLバンド。森林監視に適した設計。

陸域観測技術衛星「だいち」(ALOS)

ー災害監視、地図作成、地域観測、資源探査 ー2006年1月24日打上げ ー2011年5月12日に運用停止

PRISM

PRISMは、2.5m(35km四方)という高分解能で地表のデータを観測することを目的に設計されており、人間が見ることのできる波長の光を3方向から観測することで、地形の凹凸を標高データという形で取得することがでる。

AVNIR-2

AVNIR-2は、青、緑、赤の3色 と近赤外領域の計4種類の波長で 観測することで、多目的なカラー画 像(10m分解能:70km四方)を作 成することが可能です。 また、災害時などには衛星直下 以外の領域を観測可能なようにポ インティング機能を持っている。

1111

PALSAR

PALSARは、衛星から発射した 電波の反射を受信することで観測 するセンサであるため、観測する領 域の天候・昼夜に関係なくデータを 取得可能(10m分解能他:70km 四方)。

また、観測範囲や分解能が可変 であり、用途に応じた柔軟な観測 が可能。

ALOS/PALSARセンサ

ALOS/PALSARの観測モード図

PALSARは、入射角を8~60度の範囲で変更した観測(FB#1~FB#18)や、 観測幅が最大350kmのScanSAR(広域観測)モード(SB#1~SB#3)など、 多様な観測が可能である。

- ALOS: Advanced Land Observing
 Satellite (陸域観測技術衛星)
 (ただし、必ずしも陸域専用ではない)
- PALSAR : Phased Array type L-band Synthetic Aperture Radar
- ・衛星搭載では世界初の4偏波同時 観測(HH+HV+VH+VV)を実現

ALOS-2について

プロジェクトの目的(JAXA/ALOS-2Webサイトより抜粋)

- 大規模自然災害への利用実証 国内外の大規模自然災害に対して、高分解能かつ広域の観測データを迅速に取 得・処理・配信するシステムを構築し、関係機関の防災活動、災害対応において 利用実証を行うことを目指す
- 2. 平常時のニーズへの対応
 国土管理や資源管理など衛星の運用の過半を占める平常時のニーズにも対応した多様な分野における衛星データの利用拡大を図ることを目指す
 (穀物等の生育状況把握、地球規模環境課題の解決、資源、エネルギー供給の円滑化に役立つ:資源調査等に役立つ)

<u>搭載センサ</u>

- 1. PALSAR-2: Phased Array-type Synthetic Aperture Radar -2 合成開ロレーダ。メインセンサ。Lband
- CIRC: Compact Infrared Camera 非冷却型赤外検出器。森林火災、火山観測等への応用。実験センサ。PALSAR-2が右offnadir30度を観測している際に直下を向いて観測できる
- 3. SPAISE2: SPace based Automatic Identification System Experiment 2 人工衛星搭載のAIS(自動船舶識別装置)の実験センサ。

PALSAR-2の観測概念図

- ・ 衛星姿勢の変更により左・右視観測が可能(ALOS/PALSARは右観測のみ)
- 非観測時 :アンテナ法線方向 ⇒ 地心方向
- ・ 観測時 :アンテナ法線方向 ⇒ ロール角±30deg

観測モードの変更は約2秒で可能 観測方向の変更は時間がかかる

PALSAR-2センサ

知	SPOT LIGHT	高分解能					広域観測		
モード		3m	6m		10m		ScanSAR 350km		ScanSAR 490km
空間分解能 (m)	Rg x Az 3 x 1	3	6 10		100 (3look)	100 (3look)	60 (1.5 look)		
観測幅 (km)	Rg x Az 25 x25	50	50	40	70	30	350 (5Scan)	350 (5Sacn)	490 (7Scan)
偏波	1	1 or 2	1 or 2	4	1 or 2	4	1 or 2	1 or 2	1 or 2

ALOS/PALSARセンサからの主な変更点

- 高分解能化(10m⇒3m x 1m)
- ScanSAR観測範囲拡大(350km⇒490km)
- 全偏波観測(ポラリメトリ観測)の一般化⇒実験モードから格上げ
- 左右観測による観測幅拡大:870km ⇒ 2300km
- 緊急観測時の頻度向上⇒リクエストは最短1時間前(ALOSは5時間)

偏波について

- 日本は12時間以内、アジア域は24時間以内に観測
- 観測後1時間程度での画像提供(ALOSは3時間)

•直線偏波 :水平偏波(Horizontal)

: 垂直偏波(Vertical)

₽

衛星の場合、衛星進行方向に平行なものを H偏波(水平偏波)、垂直なものをV偏波 (垂直偏波)と定義

> HH: H送信, H受信 HV: H送信, V受信

森林では特に、H送信された水平偏波が散乱に よって垂直偏波となる特性がある。

森林モニタリングではHV(H送信, V受信)の画 像が重要

SAR観測のメカニズム

- 斜め方向からのマイクロ波の反射, 散乱をとらえている。対象 物によって散乱が異なる。
- マイクロ波の波長によって反射,散乱の特性が異なる。Lバンドを用いているALOS/PALSAR, ALOS-2/PALSAR-2は森林に適している。
- 偏波にはHH, HVなど種類がある。森林ではHVが適している。

SARを使った 森林における解析事例

ALOS/PALSARによる 森林・非森林図

PALSAR/FBDデータ (FBD: Fine Beam Dual)

Lバンド SAR FBDデータ

特にHVにおいて,明るいところが森林,暗いところがプランテーションや農耕地,あるいは伐採地となっている。

インドネシア スマトラ島 リアウ州

PALSAR FBDを用いた森林抽出

森林、非森林地域における画素値のヒストグラムの例

森林, 非森林の境界部分に閾値を設定して分類することで森林, 非森林を簡易に分類することができる。

FBDカラー合成が像と森林・非森林図

Lバンド SAR FBDデータからの森林・非森林図

カラー合成したSAR画像にて、明るい緑の箇所が森林、暗い部分や茶色い箇所が非森林。

ALOS/PALSARによる全球森林・非森林図

PALSAR 10m Global Forest/Non-Forest Map 2009

Forest is defined as the biomass higher than 100 ton/hectare. The accuracy of the forest/non-forest demarcation by this image is confirmed to be 84% compared to the ground base data set. This ground truth data set that is compiled based on local data of each one-degree square area in latitude and longitude gathered from the Degree Confluence Project (http://confluence.org/)

ALOS/PALSARは雲に邪魔されないため、安定的に全球を観測しデータをそろえることが可能なため、年ごとの森林、非森林図を作成することが可能。 定期的な観測は森林モニタリングには重要。

森林・非森林の継続監視

全球にわたり森林・非森林が把握出来るため、継続的にデータを作成することで伐 採などの変化を監視することが可能。

全球森林•非森林図

- ALOS/PALSARにより全球にわたって森林・非森林の分布を把 握することが可能。
- SARの特性を活かし、毎年安定的に森林・非森林図を作成することができる。
- 継続的なデータ作成により、伐採等による変化を監視することが出来る。
- ALOSの後継機であるALOS-2においても同じように全球を観測 する計画しているため、森林の長期にわたる継続監視が期待 される。

ALOS/PALSARによる 伐採地抽出

PALSARによる伐採地抽出

✓森林におけるLバンドSARの特性を用い た伐採地の抽出

✓HH,HVの2偏波を用いたALOS/PALSR のLバンドのFBDデータ

インドネシアにおけるアカシア人工林のサイクル

PALSAR FBD 343 Red: HH Green: HV Blue: HH/HV

インドネシアにおけるアカシア人工林のサイクル

アカシア林におけるHH & HV 偏波と林齢との関係 - 2007/6/28 and 2008/6/30 FBD 343と植栽時期

──HVは急激に増加し、1年ほどで頭打ちになる。

インドネシアにおけるアカシア人工林のサイクル

インドネシアにおけるアカシア人工林のサイクル

POL 23.1 2009/5/13

Photos taken 2009/4/6

Doses3月植栽 (林齢約1年) H: title large のos 年7月植栽 (林齢約3.8年) Oos 年7月植栽 (林齢約3.8年)

インドネシアにおけるアカシア人工林のサイクル

まとめ

✓ HH, HVの値のアカシア林における林齢への依存性

- ✓ 植栽後HVが増加し、1年ほどで頭打ちとなる。
- ✓ HHは徐々に減少し天然林に比べ0.5-1dBほど低い値となる。季節変化は天然林と 類似している。
- ✓ 強い表面散乱によりHHが植栽直前に高い値となる。(伐採直後の地上の粗度が増加するため?).
- ✓ 植栽後0-2年の若齢林においてHHの値は変動が大きい。これは乾季の方が変化 が顕著である。

3. SARデータの特性と 活用上の留意点

SARセンサを搭載した衛星 とセンサの多様性

衛星搭載SARセン	サ	の諸元
------------------	---	-----

衛星名 (センサ名)	ERS-1 (AMI)	JERS-1 (SAR)	ERS-2 (ANI)	RADARSAT-1	ENVISAT (ASAR)	ALOS (PALSAR)	TerraSAR-X	COSMO- SkyMed1	RADARSAT-2	TanDEM-X	ALOS-2 (PALSAR-2)
所有国	欧州	日本	欧州	カナダ	欧州	日本	ドイツ	イタリア	カナダ	ドイツ	日本
打ち上げ時期	1991. 7 -2000. 3	1992. 2 -1998. 10	1995. 4 -2011. 9	1995. 11-	2002. 3 -2012. 5	2006. 1 -2012. 5	2007. 6-	1) 2007. 6- 2) 2007. 12- 3) 2008. 10- 4) 2010. 11-	2007. 12-	2010. 6-	2014. 5. 24
軌道高度	777km	568km	785km	793 -821km	780 -820km	691km	514km	620km	798km	514km	628km
軌道傾斜角	98.5度	97.7度	98.5度	98.6度	98.55度	97.16度	97.44度	97.86度	98.6度	97.44度	97.9度
回帰日数	35日	44日	35日	24日	35日	46日	11日	16日	24日	11日	14日
周波数 (パンド)	5. 3GHz (C)	1. 275GHz (L)	5. 3GHz (C)	5. 3GHz (C)	5. 3GHz (C)	1. 270GHz (L)	9. 95GHz (X)	9. 65GHz (X)	5. 405GHz (C)	9. 65GHz (X)	1. 2GHz帯 (L)
波長	5.7cm	23.5cm	5.7cm	5.7cm	5.7cm	23. 5cm	3.1cm	3.1cm	5.7cm	3.1cm	23. 5cm
偏波	VV	HH	VV	HH	Single, Dual	Single, Dual, Quad	Single, Dual, Quad	Single, Dual	Single, Dual, Quad	Single, Dual, Quad	Single, Dual, Quad
入射角	23度	38.7度	23度	10 - 60度	15 - 45度	8 - 60度	15 - 60度	20 -59.5度	20 - 60度	15-60度	8 - 70度
観測幅	100km	75km	100km	50 - 500km	58 - 405km	70 - 350km	10 - 100km	10 - 200km	20 - 500km	10 - 100km	25 - 490km
分解能	30m	18m	30m	9 - 147m	30 - 1000m	10 - 100m	1 - 16m	1 - 100m	3 - 100m	1 - 16m	1 - 100m
アンテナサイズ	1 ×10m	2.2 ×12m	1 ×10m	1.5 ×15m	1.3 × 10m	3.1× 8.9m	0.7 ×4.8m	1.4x5.7m	1.5 ×15m	0.7 ×4.8m	2.9×9.9m

偏波の詳細(観測モードにより使用できる偏波は異なる)

偏波	ENVISAT (ASAR)	ALOS (PALSAR)	TerraSAR-X	COSMO-SkyMed	RADARSAT-2	ALOS-2 (PALSAR-2)
Single	HH, VV	HH, VV	HH, HV	HH, HV, VH, VV	HH, VV, VH, HV (Extended High ∶はHHのみ)	HH, HV, VH, VV
Duai	HH+HV, HH+VV, VV+VH	HH+HV, VV+VH	HH+HV, VV+VH	HH+HV, HH+VV, VV+VH	HH+HV, VV+VH	HH+HV, VV+VH
Quad		HH+HV+VH+VV	HH+HV+VH+VV		HH+HV+VH+VV	HH+HV+VH+VV

衛星, センサを選ぶ際の注意点

- 同じSARでもマイクロ波の周波数の違いで特性が変わる。
- 同じセンサでも利用出来る偏波が異なる。
- 森林モニタリングに適していると言われているLバンドはJERS-1, ALOS, ALOS-2のみ。

SARデータの処理レベル

処理レベルの違いと観測画像

SARの処理レベルは、基本的に以下の3種類に分類される:

・生データ (RAW)

・シングルルック複素データ(SLC)

マルチルック画像データ(MLI)

※呼び方が衛星により若干異なるので注意が必要

RAW(生)データ

RAW(生)データ 画像再生前の受信信号(画像になって いない) 複素数のデータであり、実部、虚部を 含む。 左図は,複素数のデータの大きさを計 算し,表示したものである.

$$a+b\iota$$
の場合, $\sqrt{a^2+b^2}$

SLC (Single Look Complex) データ

SLC画像

画像再生処理を行った画像(レンジ圧縮,アジマ ス圧縮 再生後の画像は複素数であり、実部、虚部のデー タが格納されている。 マイクロ波散乱強度に加え,位相情報もデータと して保持している。 縦横それぞれの方向(レンジ方向とアジマス方 向)の空間分解能が一致していないため,画像の 縦横比が合っていない.

左図は、複素数のデータの大きさを計算し、表示 したもの.

$$a+b\iota$$
の場合, $\sqrt{a^2+b^2}$

画像再生後のため、RAWデータと比較して、分解能 が上がっている。

MLI (Multi Look Intensity) データ

PALSAR L1.5R画像 ジオリファレンス画像 Geo-Referenced

PALSAR L1.5G画像 ジオコーデッド画像 Geo-Coded MLI画像

レンジ圧縮,アジマス圧縮といった画像再生 後の画像 実際の地表面上の画素配列になっている。 地形による影響は未補正 画像は実数である. SLCデータと異なり,位相情報を含まない. 画像の一辺が、衛星の進行方向と平行な画像 をジオリファレンス画像,南北方向と平行な 画像をジオコーデッド画像と呼ぶ. 縦横(レンジ,アジマス)方向の画素の大き さは揃えられている

処理レベルの注意点

- SARデータには地図に載る画像荷なる前に再生,前処理が必要となる。処理の段階によってRAW, SLC, MLIがある。
- RAW, SLCを画像化するには専用の処理ソフトが必要であるため,画像を確認したいだけの場合にはMLIでないとあつかいづらい。

地形による影響

地形と観測システムに起因する歪み

ーフォアショートニング、レイオーバーー

シミュレーション画像による比較

フォアショートニング, レイオーバ による画像のひずみは、同位置から 光学センサで観測した場合と逆方向 に現れる。

地形と観測システムに起因する歪み

地形による影響の注意点

- 山岳地において、センサ側に地形が倒れ込む。
- 山岳地において、センサ側と反対側で輝度が異なる。
- 解析を行う場合、地形効果を取り除く処理が必要。

4. SARデータの取得 購入について

PALSAR全球オルソモザイクデータセット(PGM)とは

PALSAR全球オルソモザイクデータセット(PALSAR Global Mosaic: PGM)は、全球をカバーする10 or 25m解像度のPALSARデータセットで、オルソ補正及びモザイク処理を施してあります。
 PGMは、「タイル」単位のデータ(1度、偏波ごと)となっています。(3、4ページ参照)
 知的財産権は、独立行政法人宇宙航空研究開発機構(JAXA)に帰属します。本製品は、JAXAからの受託により、RESTECが開発したものです。

65

	仕様	備考		
製品探要	PALSAR <mark>FBD (HH, HV</mark>)を使用したオルソ処理済み全球モ ザイクデータセット	・オフナディア角: 34.3度 ・オルソ補正用DEM:SRTM-3 (90m メッシュ DEM)を主に使用 ・JERS SAR (1992-1998、HH) によるモザイクデータセットも有		
レクセルフィーミン・グ	緯度、経度とも約0.32秒(緯度10m相当)	・緯度60度以上の地域では緯度約3.2秒、経度約3.2秒		
ヒクセルスハーシンク	緯度、経度とも約0.8秒(緯度25m相当)			
位置(ジオメトリック)精度	13m RMSE (1 σ)	・GPSにて決定されたコーナリフレクタ位置との比較*1		
輝度(ラジオメトリック)精度	後方散乱係数0.76dB(1 σ)(元データ精度として*3)	・モザイク時にパス間の輝度差を最小化*1		
斜面勾配補正	有 / 無(選択可能)*2	・有・無のいずれかを選択		
測地座標系	ITRF97	・楕円体モデル:GRS80、ジオイドモデル:EGM96		
地國投影國法	等緯度経度図法			
観測日	ビクセル毎に識別可能	・観測日ファイルに打上日からの通算日をビクセル毎に記載		
販売単位	緯度1度×経度1度	・赤道付近において約100km四方 ・10m製品の一部の地域(緯度60度以上)は5度×5度単位での提		
画像フォーマット	GeoTIFF	・ワールドファイル(*.twf)は含まず ・Rawデータ とENVIヘッダーファイルでの提供も可能		

根拠文献 (*1)モザイク画像作成全般について :Shimada, M. and Ohtaki, T., Generating Large-Scale High-Quality SAR Mosaic Datasets: Application to PALSAR Data for Global Monitoring., IEEE J. OF SELECTED TOPICS IN APPL. EARTH OBS. AND REMOTE SENS., PP.637-656, VOL3., NO.4, DEC, 2010 (*2)オルソ変換、ジオメリック精度について:Shimada, M., Ortho-Rectification and Slope Correction of SAR Data Using DEM and Its Accuracy Evaluation, IEEE J. OF SELECTED TOPICS IN APPL. EARTH OBS. AND REMOTE SENS., PP.657-671, VOL3., NO.4, DEC, 2010 (*3)PALSAR CALVAL全般について :Shimada, M., et. Al., PALSAR Radiometric and Geometric Calibration, IEEE Transactions on Geoscience and Remote Sensing, P3915-3932, Vol47, Issue12, 2009

年別モザイクの他年データによる補完状況

※ 各年において適切な観測データが無い場合は、他年の同時期のデータで補完しています。

ー般財団法人リモート・センシング技術センター ソリューション事業部 TEL: 03-6435-6789

E-mail: data@restec.or.jp

製作・編集 一般財団法人リモート・センシング技術センター

無断複製・転載を禁ず
