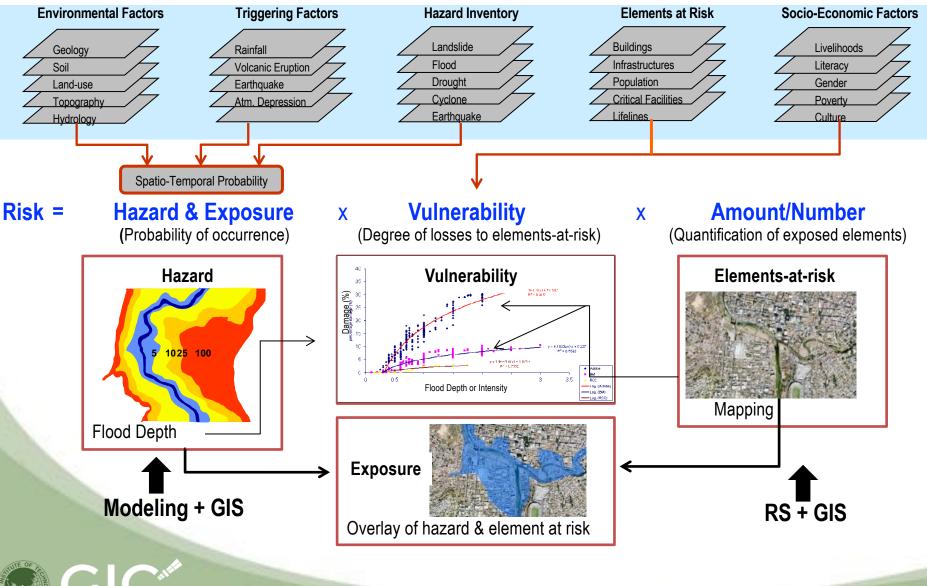
RiskChanges - An Open Source Tool for Multi-Hazard Risk Assessment and Decision Making

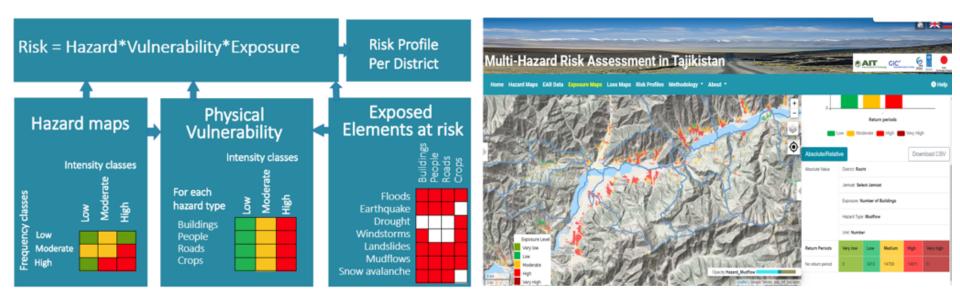
Dr. Manzul Kumar Hazarika

Director, Geoinformatics Center, Asian Institute of Technology, Thailand <u>manzul@ait.asia</u>


With inputs from

Prof. Cees van Westen Mr. Ashok Dahal

ITC, University of Twente, Netherlands



Spatial Representation of Multi-Hazard Risk

Multi-Hazard Risk Portal - Tajikistan

http://tajirisk.ait.ac.th/

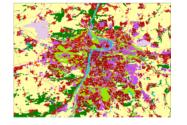
Portal

- Risk profiles per administrative unit
- <u>Querying</u> hazard, exposure, loss and risk information

Further Requirements

- A <u>risk assessment tool</u> is required in-house;
- Data <u>updating</u> at local level;
- F<u>uture risk scenarios</u>

Motivation for Developing RiskChanges


Short-comings in existing risk assessment tools:

- Non-availability of a true <u>multi-hazard risk</u> assessment software in opensource;
- Often too <u>complex</u> and data <u>intensive;</u>
- Many of them are <u>country or region</u> specific;
- Often lacking multi-hazard interactions;
- Often lacking <u>future scenarios</u> and <u>risk</u> <u>reduction</u> alternatives.

Workflow in RiskChanges

Data Input:

Exposure Analysis

Loss Analysis

Risk Analysis

• Annual Average Loss (AAL)

- Hazard Maps
- Elements at risk Maps
- Vulnerability Curves

Elements-at-Risk Module

SDSS Data Management * Modeling * Planning * Decision Making *

Element at Risk

File upload OGC service Database connection	n	
Choose or drag the zipped Shapefile that represents th	he Layer	Browse
lame *	Type *	
	Type * Select ear type	1
lame * Enter layer name fear of representation		1

\$

Help

Ducimus aut unde enim! Harum reiciendis sapiente dolores maiores animi voluptates similique ratione cupiditate. Lorem lpsum dolor, sit amet consectetur adipisicing elit. Omnis sequi elus eaque. Ea perferendis nam officia, ducimus aut unde enim! Harum reiciendis sapiente dolores maiores animi voluptates similique ratione cupiditate. Lorem lpsum dolor, sit amet consectetur adipisicing elit. Omnis sequi elus eaque. Ea perferendis nam officia, ducimus aut unde enim! Harum reiciendis sapiente dolores maiores animi unhentates aimilinua, rationa

Cancel Submit

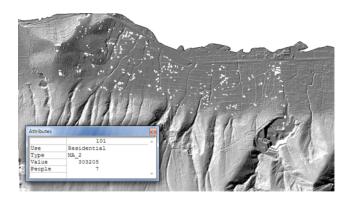
Current situation (S0)

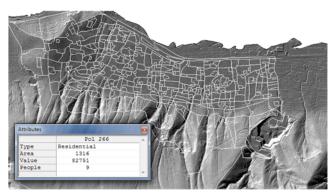
Elements-at-Risk Module

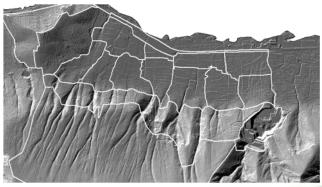
Points

• Critical facilities.

Lines

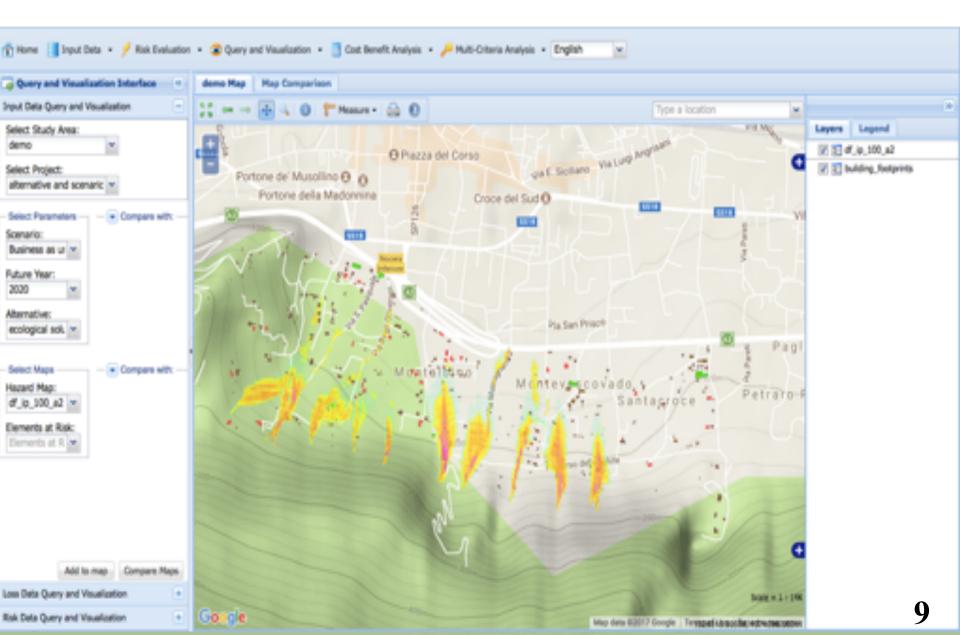

• Roads, utility lines (electricity, water etc.)


Building footprints

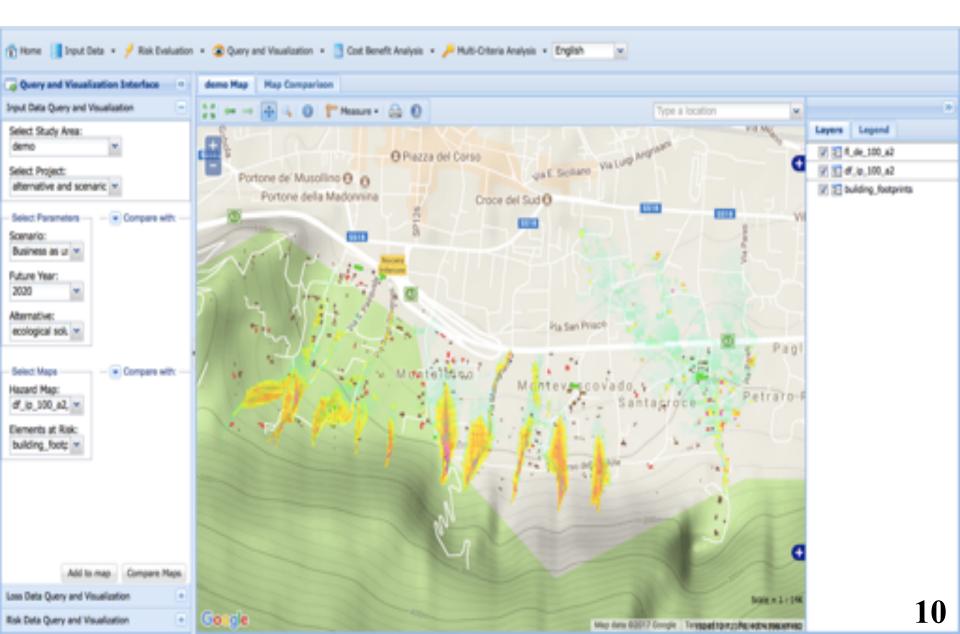

• Government, residential, commercial etc.

Land parcels

• Urban, agriculture, forest etc.


Hazard Module

You are active in the project Tajikistan Loss calculation. If you want to switch the project, go back to organization dashboard and choose another project.


File upload OGC service Database connection				
Choose or drag the GeoTIFF that represents the Layer				Brow
lame		Туре		
Enter name of hazard		Select hazard type		
ntensity		Unit		
Select hazard intensity	•	Select hazard intensity unit		
isk reduction alternative		Future scenario		
Current situation (A0)	٥	Current situation (S0)		
epresentation year (future or current year)		Return period (years)		
2020	B	Average:	Min:	Max
		Unknown 📳	Unknown 😨	Unknown 🛛
				Cancel Subm

1959

Hazard Module - Debris Flow

Hazard Module - Debris Flow and Flood

Vulnerability Module

Vulnerability name	Vulnerability type	
Test	Physical	٥
Hazard type	Intensity type	
Select hazard type	\$ Select hazard intensity	\$
EAR type	EAR class	
Building footprints	\$ Building footprints	\$
Upload csv file of vulnerability		Browse

- III

More >>

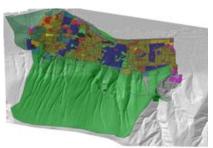
Cancel

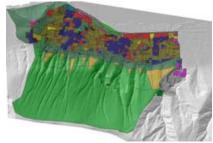
Vulnerability Module - Vulnerability Curves

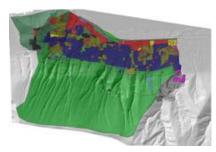
Compare with C	
Query and Yasailation Interface demo Hap demo Hap <tde< th=""><th>no 👱 -</th></tde<>	no 👱 -
Spect Dirac Query and Vesualization Search Classe Select Study Anti: demo Image: Select Study Anti: Select Study Anti: Select Study Anti: Select Study Anti: demo Image: Select Study Anti: Select Study Anti: demo Image: Select Study Anti: Select Study Anti: Materiality Class Study Anti: Select Stu	
Select Study Area: demo Heard Type Flood, ALL	
demo Interview Interview<	
elternative and scenario Image: Compare with Scenario: Business an unit Scenario: Business an unit Scenario: Business an unit Scenario: Business an unit Scenario: Business an unit Scenario: Business an unit Scenario: Business an unit Reduce Vear: Scooper with Scenario: Business an unit Reduce Vear: Scooper with Scenario: Scen	
Scientric: Scientric: Builtensi is u i Flood water daph m building W0_1 physical dummy vulness SSOS Image: Comparison of the state of	
Business as unit Business as unit Faute ther: Business as unit Faute ther:	
Rubure Year: Dubre Year: Data Year: 2030 Attractive: Attractive: Attractive: ecological sol. Attractive: engineering st Select Maps • Compare with: Hazard Map: • Compare with: 1 0.0 0.1 0.0 1 0.0 <	
2030 2030 Atomative: exotopical sol. 2030 Atomative: exotopical sol. If	
2030 2030 2030 Atternative: ecological sol, w 2030 Atternative: engineering st w 2030 20	
Atternative: ecological sol. w Atternative: engineering st w A	ing 1 - 16 of 16
Select Maps * Compare with: Te Arg Select Maps Hazard Map: (0,0,100,a2,**) 1 0.8 0.1 0.8 None 2 0.1 0.2 0.1 None 0 0 2 0.1 0.2 0.1 None 0 0 3 0.2 0.3 0.21 None 0 0 4 0.3 0.4 0.24 None 0 0 5 0.4 0.5 0.26 None 0 0 7 0.6 0.5 0.26 None 0 0 6 0.5 0.6 0.29 None 0 0 0 7 0.6 0.7 0.31 None 0 0 0 0 0 0 8 0.7 0.8 0.25 None 0 0 0 0 0 0 0 0 0 0 0 0	ng 1 - 10-07 15
Select Maps Compare with Feem To Arg Select Hazard Map: 1 0.0 0.1 0.0 Nove 1 0.0 0.1 0.0 Nove 0 0 2 0.1 0.2 0.1 Nove 0 0 0 2 0.1 0.2 0.1 Nove 0	
Hazard Map: 1 0.0 0.0 Nove 1 0.0 0.1 0.0 Nove 2 0.1 0.2 0.1 Nove 3 0.2 0.3 0.21 Nove 4 0.3 0.4 0.24 Nove 5 0.4 0.5 0.26 Nove 6 0.5 0.26 Nove 7 0.6 0.7 0.31 Nove 8 0.7 0.8 0.35 Nove	
1 0.0 0.1 0.0 Nove 2 0.1 0.2 0.1 Nove 2 0.1 0.2 0.1 Nove 3 0.2 0.3 0.21 Nove 4 0.3 0.4 0.24 Nove 5 0.4 0.26 Nove 6 0.5 0.26 Nove 7 0.6 0.29 Nove 8 0.7 0.31 Nove	•
1 0.2 0.1 Nove 1 0.2 0.3 0.21 Nove 1 0.2 0.3 0.21 Nove 1 0.2 0.3 0.21 Nove 1 0.3 0.4 0.24 Nove 5 0.4 0.5 0.26 Nove 6 0.5 0.6 0.29 Nove 7 0.6 0.7 0.31 Nove 8 0.7 0.8 0.35 Nove	
4 0.3 0.4 0.24 Name 5 0.4 0.5 0.26 Name 6 0.5 0.6 0.29 Name 7 0.6 0.7 0.31 Name 8 0.7 0.8 0.35 Name	
4 0.3 0.4 0.24 Name 5 0.4 0.5 0.26 Name 6 0.5 0.6 0.29 Name 7 0.6 0.7 0.31 Name 8 0.7 0.8 0.35 Name	
5 0.4 0.5 0.26 None 6 0.5 0.6 0.29 None 7 0.6 0.7 0.31 None 8 0.7 0.8 0.35 None	
6 0.5 0.6 0.29 None 7 0.6 0.7 0.31 None 8 0.7 0.8 0.35 None	
7 0.6 0.7 0.31 None 8 0.7 0.8 0.25 None	
8 0.7 0.8 0.35 Nove	
9 0.8 0.9 0.4 Nove	
Add to map Compare Naps 10 0.9 1.0 0.425 Nove 10	
11 1.0 1.1 0.45 Nove	
Loss Data Query and Visualization • 12 1.1 1.2 0.475 None 0 1 2 3 4 5	
Risk Data Query and Yaualization 💿 13 1.2 1.3 0.5 None Intensity (m)	

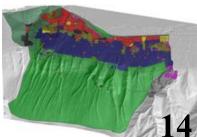
Risk Assessment and Risk Reduction Alternatives

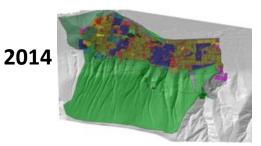
Alternatives	Measures	Hazard changes	Risk changes
Alternative 1: Engineering solutions	Engineering measures for: · Slope stabilization (Reinforcements) · Flood risk reduction (Embankments, storage tanks)	YES	PARTLY
Alternative 2: Ecological solutions	 <u>Ecological measures for</u>: Slope stabilization (plantation) Water harvesting structures 	YES	PARTLY
Alternative 3: Relocation	 Compensation, environmental and social safeguards etc. 	NO	YES

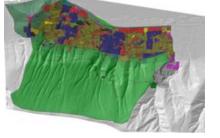


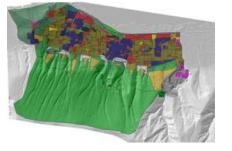

Decision Making – Risk Informed Planning

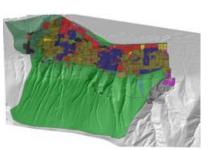

No risk reduction

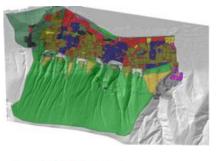

Alternative 1: **Engineering solutions**

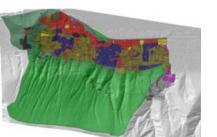

<u>Alternative 2</u>: **Ecological solutions** Alternative 3: Relocation



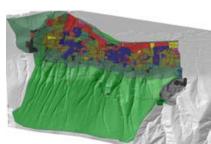


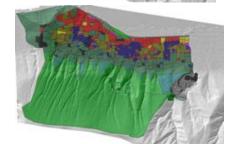












2030

2040

Conclusions

- Multi-hazard risk assessment is the first and foremost requirement for identifying and prioritizing for risk reduction efforts;
- Existing risk assessment tools have <u>limitations</u> in terms of availability, useability, and complexity;
- RiskChanges is expected to address these issues and provide an opportunity for <u>risk-informed</u> planning and development.

Thank you for your kind attention

