

MINISTÉRIO DA CIÊNCIA E TECNOLOGIA INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS

Forest Monitoring Systems in Brazil

Thelma Krug, Dalton Valeriano <u>thelmakrug@dir.inpe.br</u>

dalton@dsr.inpe.br

Seminar for Climate Change and Forests International Conference Hall – Waseda University, Japan February 7th– 8th , 2013

Summary of Presentation

• Brazilian forest monitoring systems:

- Annual wall-to-wall assessment of the gross deforestation rate
 - PRODES, Brazilian Legal Amazonia
 - Use of satellite imagery of moderate resolution (30 meters)
- Annual wall-to-wall assessment of the forest degradation
 - DEGRAD/DETEX, Brazilian Legal Amazonia
 - Use of satellite imagery of moderate resolution (30 meters)
- Near real time detection of deforestation and forest degradation
 - DETER, Brazilian Legal Amazonia
 - Use of satellite imagery of coarse resolution (250 meters)
- Present status

MINISTÉRIO DA CIÊNCIA E TECNOLOGIA INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS

Annual Wall-to-Wall Estimate of the Gross Deforestation Rate in Amazonia - PRODES

PRODES: Annual Rate of Gross Deforestation in Amazonia - Overview

Coverage: Wall-to wall

Frequency: Yearly

Integration period: Aug-Jul

Resolution – Landsat-class (Landsat, CBERS, DMC, SPOT)

Method: Visual interpretation

Minimum mapping area: 6.25 ha

Delivery Schedule:

1st estimate -90% of previous year, ~100 Scenes : November

Complete map: April, next year

Brazilian Legal Amazon Region: 5 million km²

Original forest cover: 4 million km²

Present gross deforested area: 730.000 km²

Proportion of secondary forest: 19% (130.000 km²)

PRODES: Rate of Gross Deforestation in Amazonia – a Brief history

1988-2002 – Annual assessments on a regular basis

1:250.000 Landsat Color composites

Visual interpretation

Digital area calculation

PRODES: Rate of Gross Deforestation in Amazonia – a Brief history

Three bands color composite

INPE's new development in the 90's

SPRING – Geographic Information Processing System

Features applied to PRODES:

•Linear Mixing Model

Image Segmentation

Object Oriented Classification

•Raster and Vector Edition

SOIL

SHADOW

GREEN VEGETATION

PRODES: Rate of Gross Deforestation in Amazonia – a Brief history

1997-2005 – SPRING based digital Landsat image analysis

Image segmentation and classification

Change detection with masking of previous deforestation

PRODES: INPE's Amazon Monitoring Program A brief history

2005-Present: Visual intepretation in TerraAmazon GDBM Platform

TerraAmazon overview:

Allows multisource and multitemporal data

Allows multiple interpreters

Real-time GDB update

Lock-in lock-out control

TerraLib open code

PRODES: Rate of Gross Deforestation in Amazonia – a Brief history

2005-Present: Visual intepretation in TerraAmazon GDBM Platform

TerraAmazon overview:

Tbyte level GDB

•Interpretation time:

(SPRING) DIP+Ed:20 hs

(TerraAmazon) VI: 5-10 hs

MINISTÉRIO DA CIÊNCIA E TECNOLOGIA INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS

PRODES schedule:

1st Semester:

April :Complement of 2011 inventory

2nd Semester

First deforestation estimate

Data Acquisition: Jun-Sep

Product delivery: November

o 53 30 38 s 10 24 45 - Peixoto de Azevedo/MT - Landsat 225/67

o 57 00 05 s 11 49 48 - Porto dos Gaúchos/MT - Landsat 227/68

Annual Gross Deforestation Rates from 1988 to 2012 (km²/year)

Annual Deforestation Rate per State in Amazonia 1988 – 2012 (km2/year)

PRODES: Rate of Gross Deforestation in Amazonia – Internet Access

Full access to source images, maps and statistics

Deforestation in Rondônia (detail) – 2003

Deforestation in Rondônia (detail) –

Deforestation in Rondônia (detail) – 2005

MINISTÉRIO DA CIÊNCIA E TECNOLOGIA INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS

Monitoring the State of the Forest: DEGRAD e DETEX

562_27092007_2 267_27082007_1 467_310706 862_311006_v2

ETIVO STAMENTO

2008 а RTE AR R 008 R163 DR_2007_ENTREGA_M 006x2007 07_inter_FP 663_19082008 0808_SLxVg_90_50_M 08_SLxVg_90_50_M_1 0808_SLxVg_90_50_M 08_SLxVg_90_50_M_1 08_SLxVg_90_50_M_2 668_03082008_2

668_03082008_4 868_12082006

ETIVO STAMENTO

2008 а RTE AR R 008 R163 DR_2007_ENTREGA_M 006x2007 07_inter_FP 663_19082008 0808_SLxVg_90_50_M 08_SLxVg_90_50_M_1 0808_SLxVg_90_50_M 08_SLxVg_90_50_M_1 08_SLxVg_90_50_M_2 668_03082008_2 668_03082008_4

8

ell

562_27092007_2 267_27082007_1 467_310706 862_311006_v2

ETIVO STAMENTO

2008 а RTE AR R 800 R163 DR_2007_ENTREGA_M 006x2007 07_inter_FP 663_19082008 0808_SLxVg_90_50_M 08_SLxVg_90_50_M_1 0808_SLxVg_90_50_M 08_SLxVg_90_50_M_1 08_SLxVg_90_50_M_2 668_03082008_2 668_03082008_4

868_12082006

8

ell

562_27092007_2 267_27082007_1 467_310706 862_311006_v2

ETIVO STAMENTO

2008 а RTE AR R 008 R163 R_2007_ENTREGA_M 006x2007 07_inter_FP 663_19082008 0808_SLxVg_90_50_M 08_SLxVg_90_50_M_1 0808_SLxVg_90_50_M 08_SLxVg_90_50_M_1 08_SLxVg_90_50_M_2 668_03082008_2 668_03082008_4 868_12082006

MINISTÉRIO DA CIÊNCIA E TECNOLOGIA INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS

Near Real Time Monitoring of the Legal Amazonia - DETER

MINISTÉRIO DA CIÊNCIA E TECNOLOGIA INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS

Near Real Time Monitoring of the Legal Amazonia - DETER

Carbon maps for Brazilian Amazonia

- Largest source of uncertainty regarding carbon emissions from deforestation is the spatial distribution of biomass.
- Differences in emission estimates can be on the order of 20% using our baseline model parameters.
- Estimates based on submodels B1 (Saatch et al., 2007), B3 (MCT, 2010) and B4 (Saatchi et al., 2011a,b) are relatively similar at the regional level, those based on B2 (Nogueira et al., 2008) are significantly higher.
- This difference could be even higher if the same percentage of BGB in relation to AGB in all the submodels.

□ Root to shoot ration is 20% in B2, 28% in B3 and 30% in B1–B4.

 The emission estimate differences would increase to 30% as BGB contribution in B2 would be larger.

MINISTÉRIO DA CIÊNCIA E TECNOLOGIA INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS

DETER-R : Assimilation of PALSAR data in the Deforestation and Forest Degradation Warning System

Examples of L-band deforestation detection capability from JERS-1 GRFM Mosaics

Examples of L-band deforestation detection capability from ALOS/PALSAR

Imagem ALOS de 23/08/2007

17	Detecções com uso do ALOS
	DETER acumulado 2007
	PRODES 2000 a 2006

Imagem MODIS de 28/09/2007

Modeling the spatial and temporal heterogeneity of deforestationdriven carbon emissions: the INPE-EM framework applied to the Brazilian Amazon

Global Change Biology (2012), doi: 10.1111/j.1365-2486.2012.02782.x

Carbon maps for Brazilian Amazonia

- Largest source of uncertainty regarding carbon emissions from deforestation is the spatial distribution of biomass.
- Differences in emission estimates can be on the order of 20% using our baseline model parameters.
- Estimates based on submodels B1 (Saatch et al., 2007), B3 (MCT, 2010) and B4 (Saatchi et al., 2011a,b) are relatively similar at the regional level, those based on B2 (Nogueira et al., 2008) are significantly higher.
- This difference could be even higher if the same percentage of BGB in relation to AGB in all the submodels.
 - Root to shoot ration is 20% in B2, 28% in B3 and 30% in B1–B4.
- The emission estimate differences would increase to 30% as BGB contribution in B2 would be larger.

Future – challenges for REDD+

Within Brazil

- Expansion of the deforestation and forest degradation systems to include all biomes: national system
- Adapt the present monitoring system to the specificities of other biomes
- Data availability some biomes require satellite data of finer spatial resolution (less than 5 meters)
- □ Implement a national forest inventory
- □ Going beyond fiscalization and law enforcement
- Definition of reference emission level for all biomes (RL for Amazonia used only historical

Future – challenges for REDD+

Within Brazil

- When conservation (mantainence of carbon stock) can be considered a mitigation activity and not BAU?
- Estimating carbon stock change beyond IPCC tier 1 method and conservativeness for all biomes.
- □ How to treat natural disturbances?

Thank you