Technical aspect of REDD+ demonstration activities of JICA -Required skill and technical options-

International Technical Seminar Towards developing a framework of global REDD+ Session 2 How should REDD+ demonstration activities be implemented and scaled up?

Japan Forest Technology Association KEI SUZUKI

February 8, 2012

Three Contents of REDD+

Three Scales of REDD+

Outline of the JICA REDD Study

"Study on Potential Forests and Land Related to Climate Change and Forests"

Objectives

The Study contributes to facilitation of international efforts for mitigation of global climate change under UNFCCC through identifying the potential areas for A/R CDM projects and the reducing emissions from deforestation and forest degradation in developing countries (REDD) and examining possibilities of non-UNFCCC approaches in Viet Nam.

Duration

From September 2009 to March 2012 (two year and 7 months)

Seven (7) Main Components of the Study

- 1. Development of Activity Data using RS data
- 2. Development of Emission Factor using NFI
- Setting interim RL/RELs for REDD and estimating cost and beneficial effects associated with A/R-CDM and REDD
- 4. Model land survey
- 5. Preparation of "the Basic Plan for REDD+ Development in Dien Bien Province"
- 6. Development of method on monitoring for change of forest carbon
- 7. Provision of information to potential investors

One Methodology for Estimating Carbon Change

Development of the forest distribution maps Existing Data

- RS imagery
 - 1st cycle 1991 1995: Landsat TM
 - 2nd cycle 1996 2000: Landsat TM+SPOT
 - 3rd cycle 2001 2005: Landsat ETM+
 - 4th cycle 2006 2010: SPOT5
- Visual interpretation and correction through field surveys
- Over 30 detailed LU/LC categories

FDM 1990

AN

Development of the forest distribution maps Results (National Scale)

National scale forest type area changes from 1990 in Viet Nam

Results-3 (summary in regions)

4. 000

- Other land
- Bare land, shub land, etc.
- Limestone Forest
- Coniferous Forest
- Deciduous Forest
- Evergreen Forest (medium)

- Residential area
- Limestone area (no forest)
- Mangrove forest
- Mixed Timber and Bamboo Forest
- Rehabilitation Forest
- Evergreen Forest (rich)

- Water body
- * Plantation
- Mixed Broadleaf and Coniferous Forest
- Bamboo Forest
- Evergreen Forest (poor)

Arrangement of the national forest inventory data Existing Data

- A sample plot system
- 4 cycles from 1991 with 5 years interval
 - 1st cycle 1991 1995: 3,000 Plots
 - 2nd cycle 1996 2000: 3,800 Plots
 - 3rd cycle 2001 2005: 4,200 Plots
 - 4th cycle 2006 2010: 2,100 Plots
- 8km systematic sampling
- 1 plot consisting with 40sub-plots
- Sub-Plot size=20m × 25m Rectangle

Arrangement of the national forest inventory data Results (Mean AGB+BGB par Regions and F.Types

 (CO_2t/ha)

※2 ※1	1	2	3	4	5	6	7	8	9	10	11	12
1			181	157								75
2	604	282	144	157	178		279					
3										115		104
4	798	299										
5	508	275	158	131		78	219	92				67
6	516	272	135	94		66	118				165	103
7	417	272	171	116		82	181	146				70
8												
9		271	110	115		86	122		105	4		85
10	465	282	158	148	196	138	249					94
11	502	291	162	135	153	91	199	253	292			163
12	511	280	120	128	189	104	240		271			106
14												102

X 1 (Bio-ecoregions);1=Cardamom Mountains rain forests, 2=Central Indochina dry forests, 3=Indochina mangroves, 4=Luang Prabang montane rain forests, 5=Northern Annamites rain forests, 6=Northern Indochina subtropical forests, 7=Northern Vietnam lowland rain forests, 8=Red River freshwater swamp forests, 9=South China-Vietnam subtropical evergreen forests, 10=Southeastern Indochina dry evergreen forests

11=Southern Annamites montane rain forests, 12=Southern Vietnam lowland dry forests, 14=Tonle Sap-Mekong peat swamp forests

X2 (Forest types) ; 1=Evergreen broadleaf forest(rich forest), 2=Evergreen broadleaf forest(medium forest), 3=Evergreen broadleaf forest(poor forest), 4=Evergreen broadleaf forest(rehabilitationr forest), 5=Deciduous forest, 6=Bamboo forest, 7=Mixed timber and bamboo forest, 8=Coniferous forest, 9=Mixed broadleaf and coniferous forest, 10=Mangrove forest, 11=Limestone forest, 12=Plantation

Arrangement of the national forest inventory data Existing Data

	90'~95'											
¥1 ¥2	1	2	3	4	5	6	7	8	9	10	11	12
1												
2	646	283	157	110	228		297					
3												
4	959											
5	606	283	143	140			329					12
6	560	272	124	98		106	191	5			209	71
7	471	258	141	107			193	83				7
8			113	97								
9	518	261	117	74		25	173	96				7
10	477	283	127	148	224	189	240					12
11	546	276	154	121	185	119	205	203	200			12
12	529	279	131	135	219		316	298				12
14												

9	5′	~	0	0	1
	_		_	_	

¥1 ¥2	1	2	3	4	5	6	7	8	9	10	11	12
1			149	142						64		
2	489	274	107	144	241		258					
3										68		
4	660	295	187				330					
5	561	274	139	93		87	256					7
6	587	271	115	83		119	151				116	8
1	457	268	147	99			195	98				9
8												
9		260	104	65		96	99	90				8
10	446	276	124	141	237	126	181		94			8
11	459	278	142	141	255	85	172	127	233			8
12	465	277	129	126	183		184	223	363		20	6

		(0	ľ	~	0	5	,	
1	1		-	-	1	1000	1000	-	

¥1 ¥2	1	2	3	4	5	6	7	8	9	10	11	12
1		319	163	157						99		
2	434	271	112	148	214		236					
3										99		
4	472	300	130				249					
5	519	268	142	101		83	181	82				116
6	505	270	119	75		283	114	29			116	83
7	428	285	153	109		107	151	87				60
8												
9		250	118	68		75	95	86				- 11
10	435	280	143	146	226	121	202	340				88
11	448	280	143	134	257	75	154	166	268		150	195
12	449	277	134	140	180		190	96	169		78	201
										0.0		104

			.0′								
2	1	2	3	4	5	6	7	8	9	10	
Т			181	157							
1	604	282	144	157	178		279				
										115	
Т	798	299									
_	500	0.3.0	100	101		70	010	0.0			

How to cook these basic information

to identify carbon changes

Discussion through SBSTA expert meeting about understanding of REL/RL

- What is/are the difference(s) between RL and REL and the associated methodological differences?
 Recommend guidance
- Can a Party propose REL/RLs for a subset of REDD+ activity types?
 If yes, under what conditions? (e.g. must include Deforestation)
- When is it appropriate to adjust extrapolated historical trends or estimates?
 - -To address national circumstances, on a case by case basis
 - -What type of information is needed to support adjustment?
- What information should be provided and in what form for the determination of REL/RL?
- What aspects of the construction of RL/RELs should allow for comparability among countries?
- How can we avoid perverse incentives through the exclusion of pools or activities?

Item to be considered	Option 1	Option 2
Method of calculation	Integrating Emission and Removal	Separating Emission and Removal
Units of Aggregation	National Scale	Regional Scale by Administrative Units

Technical Option when Estimation of Carbon Change Method of Calculation

森林タイプ(1990年)

Technical Option when Estimation of Carbon Change How to detect forest type area change utilizing GIS technique

森林タイプ (2000年)

Category of Year 2000 単位:Ct vergreen Evergreen broadleaf Limestone Rrehabilita Mangrove shub land. Deciduous Bamboo timber and Coniferous Limestone Residential Other Jand Grand Total orest orest forest Plantation tion forest forest forest bamboo forest forest forest medium 0001 oniferou Evergreen -2,94 -116,826 -22,157forest (rich EVEPOPER 91.4 19092 539,492 -2.305-894.207-19-6.542-156.66 -1.827.119fores (medi Evero Forest remaining Forest[°] 0 15,269 -62 -4.990-338,247 -3,667 -56,68 -552,624 fares paar Rreha tation 996 6.101 11.1 03 -1.620-170.550-1,211 -35.91-262.13 fores Degradation Forest Decid 0 0 forest **Conservation Forest** 231 Deforestation 1,449 -15,75 -88,509 Bamb Mixed -1.681 364 -566,294 and b fores **Enhancement Forest** 0 fores Mixed 0 n 0 n. broad conife Sustainable FM Forest Mangi 0 0 fores Limest 104 -18.455-1,53-16.309-138.619-596 -6.90 -434.769ores Plantation P.4 -840 0 -20 42 1,582 579 336 1.1 31 0 2.384 0 0 n 0 0 6.012 Afforestation / Reforestation 162,314 0 0 2,533,146 2.068 0 0 0 n 487 1.172 0 0 n n 0 3.529 Water Enhancement Forest Resid 0 0 24 4,109 0 0 0 5,147 area 36,838 26,704 200.003 39.640 23,129 0 0 0 0 445,697 4,540 114,830 0 23,633 -202,368 1,402,182 0 -36,8170 0 -163,380 190,728 -854,701 Grand Total 66,845 80,925 0 -26,024-1,849,693-24 -13,602-327,107

Technical Option when Estimation of Carbon Change Units of Aggregation

Summary of Interim REL/RL based on BAU

Required skills

Activity Data

 Basic understa of remote sense

 Technique of type classificat

Cook Book

How to measure and monitor forest corbon

Rhomeuge

REDD+ CookBo

Database

Estimati Change

n Factor

est types

dge of ecosystem

derstanding of

al approach

REL/RL

 Modeling Socio economic knowledge

Taking into account of national circumstances

1990~95 95~00 00~05 05~10 10~15

Thank you for attention

(Nghe An Province May, 2005, Nobumitsu MIYAZAKI)